PATCH /v1/finetuning/finetuned-models/{id}
Servers
- https://api.cohere.com
Path parameters
Name | Type | Required | Description |
---|---|---|---|
id |
String | Yes |
FinetunedModel ID. |
Request headers
Name | Type | Required | Description |
---|---|---|---|
Content-Type |
String | Yes |
The media type of the request body.
Default value: "application/json" |
X-Client-Name |
String | No |
The name of the project that is making the request. |
Request body fields
Name | Type | Required | Description |
---|---|---|---|
name |
String | Yes |
FinetunedModel name (e.g. |
creator_id |
String | No |
User ID of the creator. |
settings |
Object | Yes |
FinetunedModel settings such as dataset, hyperparameters... |
settings.multi_label |
Boolean | No |
read-only. Whether the model is single-label or multi-label (only for classification). |
settings.dataset_id |
String | Yes |
The data used for training and evaluating the fine-tuned model. |
settings.hyperparameters |
Object | No |
Fine-tuning hyper-parameters. |
settings.hyperparameters.train_epochs |
Integer | No |
The number of epochs to train for. |
settings.hyperparameters.lora_rank |
Integer | No |
Specifies the rank for low-rank matrices. Lower ranks reduce parameters but may limit model flexibility. |
settings.hyperparameters.lora_alpha |
Integer | No |
Controls the scaling factor for LoRA updates. Higher values make the updates more impactful. |
settings.hyperparameters.early_stopping_threshold |
Number | No |
How much the loss must improve to prevent early stopping. |
settings.hyperparameters.learning_rate |
Number | No |
The learning rate to be used during training. |
settings.hyperparameters.lora_target_modules |
String | No |
The combination of LoRA modules to target. Possible values:
Default value: "LORA_TARGET_MODULES_UNSPECIFIED" |
settings.hyperparameters.early_stopping_patience |
Integer | No |
Stops training if the loss metric does not improve beyond the value of
|
settings.hyperparameters.train_batch_size |
Integer | No |
The batch size is the number of training examples included in a single training pass. |
settings.base_model |
Object | Yes |
The base model to fine-tune. |
settings.base_model.name |
String | No |
The name of the base model. |
settings.base_model.base_type |
String | Yes |
The type of the base model. Possible values:
Default value: "BASE_TYPE_UNSPECIFIED" |
settings.base_model.strategy |
String | No |
Deprecated: The fine-tuning strategy. Possible values:
Default value: "STRATEGY_UNSPECIFIED" |
settings.base_model.version |
String | No |
read-only. The version of the base model. |
settings.wandb |
Object | No |
The Weights & Biases configuration (Chat fine-tuning only). |
settings.wandb.api_key |
String | Yes |
The WandB API key to be used during training. |
settings.wandb.entity |
String | No |
The WandB entity name to be used during training. |
settings.wandb.project |
String | Yes |
The WandB project name to be used during training. |
status |
String | No |
Current stage in the life-cycle of the fine-tuned model. Possible values:
Default value: "STATUS_UNSPECIFIED" |
completed_at |
String | No |
Timestamp for the completed fine-tuning. |
last_used |
String | No |
Deprecated: Timestamp for the latest request to this fine-tuned model. |
organization_id |
String | No |
Organization ID. |
created_at |
String | No |
Creation timestamp. |
updated_at |
String | No |
Latest update timestamp. |
How to start integrating
- Add HTTP Task to your workflow definition.
- Search for the API you want to integrate with and click on the name.
- This loads the API reference documentation and prepares the Http request settings.
- Click Test request to test run your request to the API and see the API's response.