PATCH /v1/finetuning/finetuned-models/{id}

Servers

Path parameters

Name Type Required Description
id String Yes

FinetunedModel ID.

Request headers

Name Type Required Description
Content-Type String Yes The media type of the request body.

Default value: "application/json"

X-Client-Name String No

The name of the project that is making the request.

Request body fields

Name Type Required Description
name String Yes

FinetunedModel name (e.g. foobar).

creator_id String No

User ID of the creator.

settings Object Yes

FinetunedModel settings such as dataset, hyperparameters...

settings.multi_label Boolean No

read-only. Whether the model is single-label or multi-label (only for classification).

settings.dataset_id String Yes

The data used for training and evaluating the fine-tuned model.

settings.hyperparameters Object No

Fine-tuning hyper-parameters.

settings.hyperparameters.train_epochs Integer No

The number of epochs to train for.

settings.hyperparameters.lora_rank Integer No

Specifies the rank for low-rank matrices. Lower ranks reduce parameters but may limit model flexibility.

settings.hyperparameters.lora_alpha Integer No

Controls the scaling factor for LoRA updates. Higher values make the updates more impactful.

settings.hyperparameters.early_stopping_threshold Number No

How much the loss must improve to prevent early stopping.

settings.hyperparameters.learning_rate Number No

The learning rate to be used during training.

settings.hyperparameters.lora_target_modules String No

The combination of LoRA modules to target.

Possible values:

  • "LORA_TARGET_MODULES_QKVO"
  • "LORA_TARGET_MODULES_QV"
  • "LORA_TARGET_MODULES_QKVO_FFN"
  • "LORA_TARGET_MODULES_UNSPECIFIED"

Default value: "LORA_TARGET_MODULES_UNSPECIFIED"

settings.hyperparameters.early_stopping_patience Integer No

Stops training if the loss metric does not improve beyond the value of early_stopping_threshold after this many times of evaluation.

settings.hyperparameters.train_batch_size Integer No

The batch size is the number of training examples included in a single training pass.

settings.base_model Object Yes

The base model to fine-tune.

settings.base_model.name String No

The name of the base model.

settings.base_model.base_type String Yes

The type of the base model.

Possible values:

  • "BASE_TYPE_GENERATIVE"
  • "BASE_TYPE_UNSPECIFIED"
  • "BASE_TYPE_RERANK"
  • "BASE_TYPE_CLASSIFICATION"
  • "BASE_TYPE_CHAT"

Default value: "BASE_TYPE_UNSPECIFIED"

settings.base_model.strategy String No

Deprecated: The fine-tuning strategy.

Possible values:

  • "STRATEGY_UNSPECIFIED"
  • "STRATEGY_TFEW"
  • "STRATEGY_VANILLA"

Default value: "STRATEGY_UNSPECIFIED"

settings.base_model.version String No

read-only. The version of the base model.

settings.wandb Object No

The Weights & Biases configuration (Chat fine-tuning only).

settings.wandb.api_key String Yes

The WandB API key to be used during training.

settings.wandb.entity String No

The WandB entity name to be used during training.

settings.wandb.project String Yes

The WandB project name to be used during training.

status String No

Current stage in the life-cycle of the fine-tuned model.

Possible values:

  • "STATUS_FAILED"
  • "STATUS_TEMPORARILY_OFFLINE"
  • "STATUS_DELETED"
  • "STATUS_READY"
  • "STATUS_PAUSED"
  • "STATUS_UNSPECIFIED"
  • "STATUS_FINETUNING"
  • "STATUS_DEPLOYING_API"
  • "STATUS_QUEUED"

Default value: "STATUS_UNSPECIFIED"

completed_at String No

Timestamp for the completed fine-tuning.

last_used String No

Deprecated: Timestamp for the latest request to this fine-tuned model.

organization_id String No

Organization ID.

created_at String No

Creation timestamp.

updated_at String No

Latest update timestamp.

How to start integrating

  1. Add HTTP Task to your workflow definition.
  2. Search for the API you want to integrate with and click on the name.
    • This loads the API reference documentation and prepares the Http request settings.
  3. Click Test request to test run your request to the API and see the API's response.